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Abstract 

 This research demonstrated the application of the deep learning method's vision 

transformers model to categorize a Thai amulet's image. To construct a dataset, we 

selected famous Thai amulets that can be found easily online. Several vision transforms 

models are used to train the system. We conducted five experiments to determine the most 

effective performance model. In Experiment 1, the model will receive direct training. 

Additional datasets will be produced in Experiment 2 using the augmentation technique. 

The Test-Time data Augmentation technique will be utilized in Experiment 3 to generate 

modifications in test dataset images. Finally, labeled and unlabeled data (Pseudo-

Labelling) were used simultaneously in each batch to train the model network in 

Experiment 4. The ensemble learning model combination is employed to improve model 

performance for Experiment 5. Furthermore, we developed a mobile application for 

capturing user-provided image data. Users can upload images to the server for processing 

and access valuable information from the database, such as the background of amulets, 

creation ceremonies, and associated beliefs, to learn more about Thai amulets. 
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1. Introduction  

 Thai amulets, or “PHRA  KHRUEANG,”  are symbols of religion that have been 

with the Thai people for a long time (Premjai & Matthew, 2022) .  Thais believe these 

amulets will protect them from danger, make them invincible, and bring good luck. 

Amulets are small Buddha images but can also feature images of monks, maestros, the 

Bodhisattvas, and other gods.  Almost every Thai Buddhist has at least one amulet.  It is 

expected that both young and older people will wear at least one amulet around their neck 

to feel closer to Buddha.  In addition, amulets are considered a fusion of religion, art, and 

history, inspiring a significant market for collectors and scholars.  However, numerous 

types of amulets in Thailand are challenging for individuals to understand and recognize. 

Therefore, many research investigations on Thai amulets have been proposed.  Chomtip, 

Juti, Terapong, and Pimluk (2010) have introduced a system called the “Buddhist Amulet 

Recognition System” (BARS). A template matching technique is applied to recognize the 

Buddhist amulet image in the recognition process.  The system precision is equal to 80% 

and takes 0.76 milliseconds pre-image for processing.  Chomtip, Vachiravit, Pornpetch, 

and Nattida (2011)  developed a system that can recognize Thai Buddhist sculptures.  The 

system is called the “Thai Buddhist Sculpture Recognition System (TBuSRS) . ”  In image 

recognition, the Euclidean distance technique is applied to recognize the Buddhist 

sculpture image. The precision rates of training and un-training datasets are 90.00 percent 

and 72.38 percent, respectively.  The average access time of the system is around 2.72 



seconds per image.  Chomtip and Natdani (2013)  developed the Buddhist Amulet Coin 

Recognition System (BACRS). The BACRS applied the rule-based technique and genetic 

algorithm method to recognize amulet coins.  The precision rate of the system is 91.53% , 

and the average access time is 1. 05 seconds for the pre- amulet image.  Waranat and 

Chomptip (2014) used image processing and artificial neural networks (ANN) to recognize 

the digital images of Thai Buddhist amulets. The two basic ANN models employed in this 

research are perceptron and multi- layer perceptron.  The perceptron can recognize the 

amulet images correctly at 97.67% , and the multi-layer perceptron can produce the best 

classification result at 100% .  Thanachai, Chalie, Toshiako, Pished and Kaneko (2014) 

demonstrated how to determine the kind of amulet from the taken image.  The pre-

processing techniques such as grayscale conversion, filtering, Prewitt edge detection, 

cropping, and resizing are applied to compute the image similarity value, and then the 

template with the highest similarity value is identified as the recognition result.  The 

system can identify the recognition rate at 60.6% accuracy.  Weera and Thanasin (2015) 

proposed the development of Thai Buddha amulet identification using a simple local 

correlation feature.  The feature is used with K-nearest neighbors for the classification 

process. The result showed that the proposed method gains a high recognition rate of about 

89.35%.  Narut and Sangthong (2020)  applied the Convolution Neural Network (CNN)  of 

the deep learning method to classify the Benjapakee Buddha amulets images.  The CNN 

architecture is designed for suitable recognition.  The efficiency of the model could 

correctly identify 80% of amulet images.  Tanasai (2021)  presented a case study of Thai 



amulet recognition using a geometric surface image.  The geometric surface images and 

their color photographs are first trained with the Generative Adversarial Networks (GAN) 

model.  The trained generator model is then used to predict the geometric surface image 

from the input color image.  The evaluation showed that the predicted geometric surface 

images contain less ambiguity than their color image counterparts under different lighting 

conditions.  Chomtip and Varin (2022)  used the pre-training CNN model (ResNet50)  to 

recognize Buddhist amulets.  Furthermore, pre-training CNN models such as ResNet18 

and ResNet101 are trained to compare the accuracy.  The system also conducted cross-

validation on an untrained dataset with accuracy, sensitivity, specificity, and precision 

rates of 99%, 95%, 99%, and 95.41%, respectively. 

Previous studies have made significant strides in amulet recognition using various 

technological methods.  However, there still needs to be a gap in effectively categorizing 

these amulets using the latest advancements in deep learning. This paper seeks to fill this 

gap by demonstrating the application of Vision Transformers (ViTs) , an advanced deep-

learning model, in categorizing Thai amulet images.  Unlike previous studies, which 

primarily focused on traditional image processing techniques and conventional neural 

network architectures, our research leverages the advanced capabilities of ViTs.  We 

selected well-known Thai amulets to form a comprehensive dataset, ensuring the system's 

relevance and applicability.  Our contribution is twofold:  First, we explore the 

effectiveness of ViTs in the specific context of Thai amulet recognition, a domain yet to 

be extensively studied with such advanced technology.  Second, we conduct five 

experiments designed to test different aspects of the ViTs model, including direct training, 



data augmentation, Test- Time Augmentation ( TTA) , Pseudo- Labelling, and ensemble 

learning.  This comprehensive approach aims to optimize the model's performance in 

recognizing the diverse range of Thai amulets.  Additionally, we developed a mobile 

application for capturing user-provided image data. Users can upload images to the server 

for processing and access valuable information from the database, such as the background 

of amulets, creation ceremonies, and associated beliefs, to learn more about Thai amulets. 

We organize the paper as follows.  Section 2 describes the details of the dataset and ViTs 

model.  We present the experiment details and results in Section 3.  Finally, we conclude 

this paper in Section 4. 

 

2. Dataset and Vision Transformers Model  

In this section, we first describe the classes and information of the dataset. Then 

we describe the details of vision transformers (ViTs) model and its characteristic. 

 

2.1 Thai Amulet Dataset 

Since there are many different kinds of amulets, we selected famous amulets that 

are simple to generate a dataset that consists of “Phra Khun Phaen,” “Phra Kring,” “Phra 

Nang Phaya,” “Phra Phong Suphan,” “Phra Rod,” “Phra Somdej,” and “Phra Sum Kor” 

(Prowd, 2021) .   We collected Thai amulet images from public datasets.  The dataset was 

randomly partitioned into training and test sets, with 80:20 ratios, resulting in 1631 and 

404 images in the respective subsets.  For our dataset, all samples were resized to match 



the input shape of the models under test.  Consequently, they were normalized using 

ImageNet normalization statistics. Figure 1 shows image of selected Thai amulet classes. 

 

[Figure 1] 

 

2.2 Vision Transformers Model 

 Vision transformers (ViTs) (Alexey et al., 2021) are a type of deep learning neural 

network architecture that was originally developed for natural language processing (NLP) 

tasks.  However, ViTs have also been shown to be effective for various computer vision 

tasks, such as image classification, object detection, and semantic segmentation.  ViTs 

work by first converting images into a sequence of patches. Each patch is then embedded 

into a high- dimensional vector space.  The embedded patches are then fed into a 

transformer encoder, which learns to represent the relationships between different parts 

of the image. The transformer encoder is a stack of self-attention layers. Self-attention is a 

mechanism that allows the model to learn long-range dependencies in the data.  This is 

important for computer vision tasks, as it allows the model to learn relationships between 

different parts of the image, even if they are far apart.  Once the transformer encoder has 

processed the embedded patches, the outputs are fed into a decoder, producing a vector 

representing the probability distribution of the image belonging to different classes. ViTs 

have several advantages over traditional CNN models for computer vision tasks. Such as 

being more efficient in terms of both memory and computing requirements, better at 

learning long- range dependencies in the data, more flexible, and easily adapted to 



different tasks.  Currently, EVA-02 (Yuxin et al. , 2023)  is a powerful and versatile ViTs 

model that can be used for various applications.  EVA-02 has achieved state-of-the-art 

results on many vision tasks while utilizing significantly fewer parameters and computing 

budgets than other vision transformers models.  There are four variations of the EVA-02 

model, with sizes ranging from 6M to 304M parameters.  These models perform 

magnificently in image recognition tasks (Table.1). 
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3. Experiments and Results 

Five experiments were conducted to assess the classification performance of Thai 

amulet recognition.  Essential parameters for all experiments are setup when training the 

model.   The learning rate value controls how quickly the model learns and is set to 2e-3. 

The batch size, the number of images the model processes in each iteration, is set to 16. 

The number of training epochs, the number of times the model sees the entire training 

dataset, is set to 30.  The input image to train the model is resized to 224x224 pixels. 

Predictive model evaluation is done using the K- Fold Cross Validation approach 

(Shanthababu, 2023). The dataset is divided into five folds. The model is then trained and 

evaluated five times, using a different fold as the validation set each time. This technique 



reduces the risk of overfitting and provides a more accurate estimate of the model's 

generalization performance. 

 

3.1 Vision Transformers Training 

In this experiment, we executed the EVA-02 model in four distinct variations 

(Tiny, Small, Base, and Large). Each model was directly trained using the training dataset. 

The performance is evaluated using accuracy and weighted F1-score. Accuracy is a simple 

measure of overall correctness.  At the same time, the weighted F1- score is a more 

sophisticated metric that considers class imbalances.  Testing model results are shown in 

Table 2. The large EVA-02 model at the fifth fold achieved the best performance at 62.35% 

accuracy and 61.86% weighted F1-score. As part of the class performance analytics, Figure 

2 demonstrates that while the model has a reasonable recognition rate for some classes, it 

struggles with others. Notably, the “Phra Sum Kor” class has a high recognition rate, but 

“Phra Rod” and “Phra Somdej” appear to be frequently confused with “Phra Sum Kor”. 

This suggests the model requires more distinctive features to differentiate between 

amulets with similar design elements.  Direct training without augmentation seems 

insufficient for the model to learn the necessary robust features. Figure 3 illustrates some 

errors of recognition. However, the recognition results could be more satisfactory because 

of the limited number of datasets.  As a result, in the following experiment, we will 

increase the number of training datasets to improve the model's performance. 
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3.2 Data Augmentation 

Data augmentation is a technique used in deep learning to increase the size and 

diversity of a training dataset artificially (Alexander et al., 2020). This is done by creating 

new data from existing data using various transformations. In order to increase the number 

of training datasets, this experiment used horizontal/vertical flipping, space translation, 

random focus, noise addition, and slight rotation.  Figure 4 illustrates a dataset resulting 

from data augmentation.  Testing model results are shown in Table 3.  The base EVA-02 

model at the fifth fold achieved the best performance at 66. 0%  accuracy and 65. 35% 

weighted F1-score. As part of the class performance analytics, Figure 5 demonstrates that 

the recognition rates for most classes and “Phra Rod”  and “Phra Somdej”  improved, 

indicating that augmentation helps the model generalize better. However, there still needs 

to be more clarity in some classes.  These errors imply that while augmentation adds 

robustness, it may not address the model's sensitivity to intra-class variability. Employing 

data augmentation increases the amount of training datasets to train the model. However, 

we can increase the number of test datasets to improve model performance, as described 

in the following experiment. 

 



[Figure 4] 

[Table 3] 

[Figure 5] 

 

3.3 Test-Time Data Augmentation 

 Test time data augmentation (TTA)  is a technique that involves applying random 

transformations to test images before making predictions ( Masanari, 2021) .  This can 

improve the model's performance by making it more robust to variations in the input data. 

TTA is similar to data augmentation, typically used during training to increase the size 

and diversity of the training dataset.  However, TTA is applied to test images, which are 

not used to train the model. After the test images have been augmented, the model makes 

predictions on each augmented image. The final prediction is then made by averaging the 

predictions from the augmented images. We compared the performance results of the test 

dataset without TTA from the previous experiment and the test dataset using the TTA 

technique of models.  From Table 4, the base EVA-02 model at the fifth fold using the 

TTA technique achieved the best performance at 67.72% accuracy and 66.81% weighted 

F1- score.  As part of the class performance analytics, Figure 6 demonstrates the 

classification results for all classes.  The “Phra Somdej”  class still improved the results 

with an accuracy of 45%. Many others had increased accuracy in this experiment, such as 

the “Phra Khun Phaen”  class, “Phra Nang Phaya”  class, “Phra Phong Suphan”  class, 

and the “Phra Sum Kor” class, but issues remain in others like “Phra Rod”. This suggests 



that TTA helps with generalization to some extent but may also introduce noise that can 

lead to misclassification in cases where the model is not well-tuned to the augmented data. 

In the following experiment, we discussed using labeled and unlabeled datasets to 

improve the model's performance.  

 

[Table 4] 

[Figure 6] 

 

3.4 Pseudo-Labelling 

 Pseudo-labeling (Dong-Hyun, 2013)  is a semi-supervised learning technique that 

can be used to improve the performance of models.  It uses a model trained on a labeled 

dataset to predict labels for an unlabeled dataset.  The predicted labels (pseudo-labels)  are 

then used to retrain a model, which can achieve better performance than the model trained 

on the labeled dataset alone.  In this experiment, the best performance model from the 

previous experiment is selected to predict pseudo-labels for unlabeled data.  The labels 

( training datasets)  and pseudo- labels datasets are used to retrain the EVA- 02 model. 

Finally, the new retrained model predicts the test dataset with the TTA technique.  Table 

5 shows the performance model using Pseudo labeling.  The large EVA-02 model at the 

fourth fold using the Pseudo labeling technique achieved the best performance at 69.80% 

accuracy and 69.12% weighted F1-score. As part of the class performance analytics, Figure 

7 demonstrates the classification results for all classes.  The classes of “ Phra Khun 



Phaen,” “Phra Kring,” “Phra Phong Suphan,” and “Phra Rod” are improved. However, 

the confusion matrix indicates persistent misclassifications, for example, between “Phra 

Nang Phaya”  and “Phra Phong Suphan” .  This could imply a need for better-quality 

pseudo-labels or a more refined approach to integrating unlabeled data into the training 

process. To enhance the recognition rate, in the final experiment, we will discover how to 

use a combination of multiple models for better prediction results. 
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3.5 Ensemble Learning  

 Ensemble learning (Jason, 2021)  is a machine learning technique that combines 

the predictions from multiple models to produce a more accurate and robust prediction. It 

is based on the idea that a group of models can make better predictions than any individual 

model.  The best model from the previous is selected as a model base (The large EVA-02 

model at the fourth fold using the Pseudo labeling technique) .  We added one model to 

evaluate the recognition accuracy, and an averaging technique was utilized. Subsequently, 

the class with the maximum probability after averaging is selected as the final prediction. 

Table 6 demonstrates the recognition rate after ensemble learning. Combining the Large–

Fold 4 and Large–Fold 3 models achieved the best performance, around 70.0%. As part of 

the class performance analytics, Figure 8 shows improved performance across most 



classes, suggesting that ensemble methods can effectively reduce the impact of individual 

model biases. Nevertheless, some misclassifications persist, indicating that the constituent 

models in the ensemble may still share common weaknesses, such as overfitting certain 

features that need to be more indicative of the correct class.  The “Phra Rod”  and “Phra 

Somdej”  classes should search for additional datasets to improve the model's accuracy 

further. 
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3.6 Mobile Application for Thai Amulet Recognition 

The application is named “Thai Amulet Recognition”  (Figure 9 (a) ) .  Users can 

upload and classify Thai amulet images with this application.  We used the Flutter 

framework to build the front-end part of our mobile application, while Python and the 

Flask framework were employed to develop the backend part. The classification model is 

stored on the server. Users can use the application's main interface to capture Thai amulet 

images or choose from their mobile gallery (Figure 9 (b) ) .  Subsequently, the application 

uploads the image to the server.  The server then prompts the trained model to predict the 

most likely classes of Thai amulets. The output class retrieves additional details from the 

database, including images, class names, and the background to learn more about Thai 

amulets (Figure 9 (c)). 



 

[Figure 9] 

  

4. Conclusions 

In this research, we successfully developed and evaluated a series of training 

model experiments for Thai amulet recognition, employing a ViTs model alongside 

various techniques like data augmentation, test-time data augmentation, pseudo-labeling, 

and ensemble learning. Our comprehensive approach demonstrated enhanced 

performance in amulet recognition and culminated in developing a user-friendly mobile 

application. This application allows users to upload amulet images and receive detailed 

information quickly. Our methodologies have the potential to be applied in broader 

contexts, such as cultural heritage preservation and educational tools, and even in 

enhancing the tourism industry by offering interactive and informative experiences 

related to Thai cultural artifacts. However, the limitation that makes our work less 

accurate is that the number of image datasets still needs to be more significant. Moreover, 

the current model's performance in varying environmental conditions, such as different 

lighting or angles, has yet to be extensively tested. Addressing these limitations will be 

crucial for enhancing the practicality and robustness of the recognition system. For future 

work, we will collect more data and create other experiments for several types of Thai 

amulets in order to enhance the recognition algorithm. We will compare the ViTs model 

used in this study and the CNN model. Another avenue for future research is the 

integration of user feedback mechanisms in our mobile application. This feature would 



allow users to provide real-time feedback on recognition accuracy, thereby enabling 

continuous learning and improvement of the algorithm. 
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Figure 1 Thai amulet: (a) Phra Khun Phaen, (b) Phra Kring, (c) Phra Nang Phaya, (d) 

Phra Phong Suphan, (e) Phra Rod”, (f) Phra Somdej, (g) Phra Sum Kor. 

 

 

 

 

 

 

 

 

 

 



 

Figure 2 Confusion matrix of the large EVA-02 at 5th fold. 

 

 

 



 

Figure 3 Example of error recognition. 

 

 

 

 

 



 

Figure 4 Example of data augmentation: (a) original, (b) scale, (c) rotate, (d) translate, 

(e) noise, (f) contrast, (g) defocus. 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 5 Confusion matrix of the base EVA-02 at 5th fold with data augmentation. 

 

 

 

 

 

 

 



 

 

Figure 6 Confusion matrix of the base EVA-02 at 5th fold with TTA data 

augmentation. 

 

 

 

 

 



 

 

Figure 7 Confusion matrix of the large EVA-02 at 4th fold with pseudo labeling. 

 

 



 

Figure 8 Confusion matrix of the ensemble learning of model. 

 



 

Figure 9 Mobile application for Thai amulet recognition: (a) main screen, (b) image 

upload, (c) amulet information. 
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Table 1 Four variations of eva-02 models. 

Table 2 Model performance evaluation. 

Table 3 Data Augmentation Model Performance Evaluation. 
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Table 5 Pseudo-labeling model performance evaluation. 
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EVA-02 Model 

Parameters 

(Million) 
FLOPs 

(Billion) 

Top-1 Accuracy on 

ImageNet (%) 

EVA-02 Tiny 10M 0.6 76.2 

EVA-02 Small 31M 1.6 77.5 

EVA-02 Base 101M 3.3 79.0 

EVA-02 Large 304M 7.6 81.4 

Table 1 Four variations of eva-02 models. 

 

Model Fold Test dataset 

Accuracy Weighted F1 

Tiny 1 0.4877 0.4852 

2 0.4938 0.4896 

3 0.5185 0.5159 

4 0.5247 0.5158 

5 0.5432 0.5362 

Small 1 0.4506 0.4405 

2 0.4352 0.4270 

3 0.4537 0.4501 

4 0.4599 0.4543 

5 0.5000 0.4981 

Base 1 0.5556 0.5551 

2 0.5988 0.5896 

3 0.6049 0.5991 

4 0.5895 0.5858 

5 0.5833 0.5710 



Model Fold Test dataset 

Accuracy Weighted F1 

Large 1 0.5957 0.5811 

2 0.5247 0.5161 

3 0.6235 0.6076 

4 0.5957 0.5906 

5 0.6235 0.6186 

Table 2 Model performance evaluation. 

 

Model Fold Test dataset 

Accuracy Weighted F1 

Tiny 1 0.4846 0.4764 

2 0.4753 0.4655 

3 0.4907 0.4894 

4 0.5185 0.5173 

5 0.4784 0.4697 

Small 1 0.4352 0.4324 

2 0.4475 0.4430 

3 0.5000 0.4948 

4 0.5031 0.4970 

5 0.5154 0.5100 

Base 1 0.5494 0.5452 

2 0.6142 0.6061 



Model Fold Test dataset 

Accuracy Weighted F1 

3 0.6142 0.6074 

4 0.6204 0.6090 

5 0.6605 0.6535 

Large 1 0.6173 0.6118 

2 0.6574 0.6539 

3 0.5926 0.5764 

4 0.5679 0.5552 

5 0.5988 0.5961 

Table 3 Data Augmentation Model Performance Evaluation. 

 

Model Fold Test dataset without TTA Test dataset using TTA 

Accuracy Weighted F1 Accuracy Weighted F1 

Tiny 1 0.4846 0.4764 0.5525 0.5497 

2 0.4753 0.4655 0.5216 0.5119 

3 0.4907 0.4894 0.5710 0.5659 

4 0.5185 0.5173 0.5586 0.5560 

5 0.4784 0.4697 0.5185 0.5079 

Small 1 0.4352 0.4324 0.4630 0.4524 

2 0.4475 0.4430 0.5216 0.5152 

3 0.5000 0.4948 0.5340 0.5297 

4 0.5031 0.4970 0.5617 0.5548 

5 0.5154 0.5100 0.5741 0.5687 



Model Fold Test dataset without TTA Test dataset using TTA 

Accuracy Weighted F1 Accuracy Weighted F1 

Base 1 0.5494 0.5452 0.6296 0.6275 

2 0.6142 0.6061 0.6605 0.6499 

3 0.6142 0.6074 0.6667 0.6570 

4 0.6204 0.6090 0.6574 0.6502 

5 0.6605 0.6535 0.6728 0.6681 

Large 1 0.6173 0.6118 0.6265 0.6130 

2 0.6574 0.6539 0.6543 0.6512 

3 0.5926 0.5764 0.6080 0.5957 

4 0.5679 0.5552 0.6204 0.6159 

5 0.5988 0.5961 0.5988 0.5986 

Table 4 Test-time data augmentation model performance evaluation. 

 

Model Fold Pseudo-Labeling 

Test dataset using TTA 

Accuracy Weighted F1 

Tiny 1 0.5421 0.5314 

2 0.5470 0.5297 

3 0.5891 0.5745 

4 0.5248 0.5147 

5 0.5569 0.5484 

Small 1 0.5173 0.4997 



Model Fold Pseudo-Labeling 

Test dataset using TTA 

Accuracy Weighted F1 

2 0.5272 0.5174 

3 0.5569 0.5446 

4 0.5891 0.5741 

5 0.5668 0.5555 

Base 1 0.6559 0.6524 

2 0.6683 0.6582 

3 0.6634 0.6561 

4 0.6782 0.6703 

5 0.6782 0.6688 

Large 1 0.6782 0.6701 

2 0.6634 0.6543 

3 0.6931 0.6850 

4 0.6980 0.6912 

5 0.6287 0.6152 

Table 5 Pseudo-labeling model performance evaluation. 

 

Ensemble learning Accuracy Weighted F1 

Large – Fold 4 - 

Add Large – Fold 3 0.7030 0.7070 

Add Large –Fold3 and 

Large – Fold 1 

0.6980 0.6914 



Table 6 Ensemble learning model performance evaluation. 


